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The majority of fractures heal through the process of endochondral ossification, in

which a cartilage intermediate forms between the fractured bone ends and is gradually

replaced with bone. Recent studies have provided genetic evidence demonstrating that

a significant portion of callus chondrocytes transform into osteoblasts that derive the new

bone. This evidence has opened a new field of research aimed at identifying the regulatory

mechanisms that govern chondrocyte transformation in the hope of developing improved

fracture therapies. In this article, we review known and candidate molecular pathways

that may stimulate chondrocyte-to-osteoblast transformation during endochondral

fracture repair. We also examine additional extrinsic factors that may play a role in

modulating chondrocyte and osteoblast fate during fracture healing such as angiogenesis

and mineralization of the extracellular matrix. Taken together the mechanisms reviewed

here demonstrate the promising potential of using developmental engineering to design

therapeutic approaches that activate endogenous healing pathways to stimulate fracture

Q10

repair.

Keywords: fracture, endochondral ossification, chondrocyte fate, developmental engineering, transdifferentiation

INTRODUCTION

Fractures heal through two pathways: endochondral ossification and intramembranous ossification Q6

Q7(Thompson et al., 2002; Bahney et al., 2015). Both processes begin with the differentiation of
local osteochondral progenitor cells found within the periosteum and endosteum (Colnot, 2009;
Duchamp de Lageneste et al., 2018). During endochondral ossification, or indirect bone healing,
progenitor cells primarily derived from the periosteum differentiate into chondrocytes to form a
cartilage callus between the fractured bone ends (Duchamp de Lageneste et al., 2018). This cartilage
is gradually replaced with bone in a process that resembles embryonic bone development and
post-natal growth. Intramembranous ossification, or direct bone healing, occurs when periosteal
and endosteal progenitor cells differentiate directly into osteoblasts. Fate of the osteochondral
progenitor is determined by the relative stability of the fracture site, with motion stimulating
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endochondral ossification and rigid microenvironments
promoting intramembranous ossification (Thompson
et al., 2002). In most cases, both healing pathways occur
simultaneously such that a robust cartilage callus forms at the
center of the fracture where the degree of motion is greatest, and
intramembranous bone forms along the periosteal and endosteal
surfaces (Thompson et al., 2002). Endochondral ossification is
the predominant mechanism by which the majority of fractures
heal and is the focus of this review (Silkstone et al., 2008; Bahney
et al., 2015).

Formation of the cartilage callus functionally serves to
stabilize the gap between the bone ends. To form the cartilage
callus periosteal osteochondral progenitor cells migrate from the
periosteum and undergo chondrogenic differentiation (Colnot,
2009). This occurs on top of the provisional fibrin matrix formed
by the hematoma (Xing et al., 2010a). Growth factors produced
by the hematoma promote cell migration and differentiation
and also create a unique microenvironment with low pH and
high lactate concentration (Wray, 1964). Formation of the
hematoma and a strong pro-inflammatory response are essential
to establishing a robust healing response (Park et al., 2002).

Following the initial hematoma, the subsequent steps of
chondrogenesis and chondrocyte hypertrophy appear to parallel
the molecular pathways involved in endochondral ossification
in the growth plate during bone development (Kronenberg,
2003; Long and Ornitz, 2013). Chondrogenic programming is
initiated by the expression of transcription factor Sox9, which is
required for chondrogenesis (Bi et al., 1999; Akiyama et al., 2002).
Sox9 regulates the expression of several chondrocyte-specific
matrix components including collagen type II and aggrecan,
the two predominant proteins within the cartilage matrix (Bell
et al., 1997; Sekiya et al., 2000). This initial extracellular
matrix is avascular and aneural until blood vessels and nerves
penetrate the soft callus during later stages of healing (Gerber
et al., 1999; Tatsuyama et al., 2000; Grässel, 2014; Hu et al.,
2017). As chondrocytes mature, they produce collagen type X,
mineralize their surrounding matrix, and undergo hypertrophy,
increasing in volume and dry mass by ∼20-fold (Cooper et al.,
2013).

There has been a centuries-long debate regarding the
subsequent fate of hypertrophic chondrocytes during
endochondral bone development and repair. In the early 1800’s,
cartilage was believed to turn into bone (Beresford, 1981; Hall,
2014). However, in the mid-1800’s, Muller and Sharpy changed
this paradigm by claiming that chondrocytes are terminally-
differentiated and ultimately undergo cell death, resulting in
the replacement of cartilage with bone derived from a separate
population of cells (Beresford, 1981; Hall, 2014). The latter model
of chondrocyte fate, for the most part, dominated in textbooks
and became the de facto model of endochondral ossification. In
recent years, modern murine genetics has enabled lineage tracing
studies that can more accurately follow the fate of cells. Using a
combination of over five different genetic models, evidence now
demonstrates that a significant portion of chondrocytes survive,
proliferate, and transform into osteoblasts that derive the new
bone (Bahney et al., 2014; Yang et al., 2014; Zhou et al., 2014; Jing
et al., 2015; Park et al., 2015; Houben et al., 2016; Hu et al., 2017).

Pathways that regulate chondrocyte to bone conversion

Q9

have practical implications on fracture healing. Importantly,
since conversion of cartilage to bone is necessary for bone
regeneration, it is critical to understand the molecular
mechanisms regulating this process. Not only will these
mechanistic data improve our understanding of impaired
healing, especially in the context of hypertrophic non-unions
where cartilage fails to convert to bone, but they will also
enable new opportunities for therapeutic intervention through
modulation of cartilage to bone transformation. Here, known
and candidate molecular regulators of chondrocyte-to-osteoblast
transformation, along with potential sources for these biological
signals, are reviewed. Finally, we propose how tissue engineering
can be used to translate the evidence reviewed here into new and
improved fracture therapies.

FRACTURE HEALING STANDARD OF
CARE

Bone Grafting
Surgical intervention is currently the only effective treatment
option for recalcitrant fractures (Bahney et al., 2015). Standard
of care is to use bone autograft or allograft to stimulate
healing (Hubble, 2002). Together this makes bone the second-
most commonly transplanted tissue behind blood. While bone
autografts stimulate strong bone repair, they come with the
cost of significant donor site morbidity and limited supply. On
the other hand, while bone allografts are readily available, they
have significantly reduced bioactivity resulting in clinical failure
associated with poor osteointegration and osteonecrosis of the
graft (Brigman et al., 2004). Consequently, there is an unmet
clinical need to develop pharmacologic agents, or “biologics,”
which can be used either as a non-invasive alternative or in
conjunction with surgical treatment to stimulate endogenous
healing mechanisms and improve fracture outcomes.

Bone Morphogenetic Proteins
Bone morphogenetic proteins (BMPs) are currently the most
common clinically-used biologics. BMP signal transduction
occurs through the binding of BMP ligands to type I and
type II serine/threonine kinase receptors (BMPR-I, BMPR-II).
This induces phosphorylation of BMP receptors and subsequent
phosphorylation of receptor SMADS (R-SMADs) 1, 5, and 8.
R-SMADS then form a complex with SMAD4, enabling it to
enter the nucleus where it regulates gene expression (Lin and
Hankenson, 2011; Long and Ornitz, 2013; Katagiri and Watabe,
2016; Salazar et al., 2016) (Figure 1).

Pre-clinical studies indicated that the BMP pathway was an
excellent target for therapeutic development due to its role in
regulating osteoblastogenesis and the ability of several BMPs to
strongly induce bone formation (Hoffmann and Gross, 2001;
Karsenty and Wagner, 2002; Einhorn, 2010). This led to a series
of clinical trials and FDA approval of two recombinant BMPs.
Recombinant human BMP2 (INFUSE R©) obtained pre-market
approval for use in lumbar spinal fusion and for the treatment
of compound tibial fractures (Einhorn, 2010; Chrastil et al.,
2013). Recombinant human BMP7, also known as Osteogenic
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FIGURE 1 | Molecular pathways. (A) Bone Morphogenetic Protein (BMP), (B) Canonical Wnt, (C) Notch, and (D) Hedgehog.Q4 Q5

Protein 1 (OP-1), received a Humanitarian Device Exemption
for the treatment of recalcitrant long bone non-unions and
for revisions of lumbar spinal fusions (Einhorn, 2010; Chrastil
et al., 2013). However, although rhBMP2 has exhibited clinical
success in spinal fusion, both rhBMP2 and rhOP-1 have shown
less impressive results in the treatment of fracture non-unions
(Einhorn, 2010). rhOP-1 has now been taken off the market and
use of rhBMP2 has been significantly diminished as a result of
reports of serious side effects, including heterotopic ossification
and tumorigenesis, and by the expense of treatment ($5,000–
$15,000 per treatment) (Einhorn, 2010; DeVine et al., 2012;
Chrastil et al., 2013; Almubarak et al., 2016).

It has been postulated that the lack of clinical success
with BMPs is due to limited understanding of the molecular
signals responsible for regulating fracture repair and that a
combination of biologics applied during the appropriate phases
of the repair process will be required to effectively stimulate
healing (Simmons et al., 2004; Sukul et al., 2015; Dang et al.,
2016a). Furthermore, supraphysiological dosing, burse release
kinetics, and rapid diffusion of BMPs are key factors contributing
to heterotopic ossification (Krishnan et al., 2017). As reviewed
recently, engineering scaffolds and drug delivery systems to
promote sustained and local delivery of BMPs is a significant and

active area of research that can translate into improved clinical
outcomes (Bessa et al., 2008; Bhattacharjee et al., 2015; Agrawal
and Sinha, 2017).

NOVEL MOLECULAR TARGETS FOR
FRACTURE HEALING

To study the molecular signals regulating chondrocyte-to-
osteoblast transformation, we have defined the chondro-osseous
border in the fracture callus as the “Transition Zone” (Hu
et al., 2017). Here, mature hypertrophic chondrocytes have been
shown to express classic osteogenic markers (i.e., runx2, osterix,
collagen type I, osteocalcin, osteopontin) indicating that these
cells adopt an osteogenic fate (Hu et al., 2017). Interestingly, a
recent publication by Hu et al. demonstrated that hypertrophic
chondrocytes at the Transition Zone also express pluripotency
transcription factors Sox2, Oct4, and Nanog, suggesting that
chondrocytes acquire a stem cell-like state during transformation
(Hu et al., 2017). Sox2 was shown to play an important role
during chondrocyte transformation since its deletion resulted
in significantly reduced bone formation and increased cartilage
retention within the fracture callus (Hu et al., 2017).
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FIGURE 2 | Fate of the chondrocyte. During endochondral ossification, the formation of the cartilage callus begins with the differentiation of periosteal stem cells into

chondrocytes, which proliferate and mature to a hypertrophic state. These hypertrophic chondrocytes then re-enter the cell cycle, express stem cell markers, and

finally transform into osteoblasts that contribute to the formation of new bone. Published evidence suggests the Bone Morphogenetic Protein (BMP), Canonical Wnt, Q13

Notch, and Hedgehog (HH) pathways as candidate regulators of chondrocyte-to-osteoblast transformation due to their effects on chondrogenesis, stemness, cell

proliferation, and osteogenesis in the context of endochondral repair ( ) and in other biological contexts ( ).

Despite advances in our understanding of chondrocyte gene
expression during transformation, the signaling mechanisms
that direct this process remain largely unknown. Evidence
suggests numerous molecular pathways as regulatory candidates,
including canonical Wnt, Notch, FGF, and Hedgehog signaling,
each of which will be explored here (Figure 1).

Canonical Wnt Signaling
Wnt signaling is traditionally categorized into the β-catenin-
dependent canonical pathway and the β-catenin-independent
non-canonical pathways (planar cell polarity and Ca2+-mediated
pathways), as recently reviewed (Gammons and Bienz, 2018).
While some evidence suggests that the non-canonical pathways
may play a role in regulating osteogenesis (Chen et al., 2007), the
canonical Wnt/β-catenin pathway is the most studied and has
been shown to play a dominant role in bone development and
fracture repair. Thus, this review focuses on the canonical Wnt
pathway.

The primary function of canonical Wnt signaling is to
regulate the transcription of genes involved in cellular processes
such as proliferation, differentiation, self-renewal, and survival.
When this pathway is inactive, β-catenin, a transcriptional co-
activator and the primary effector of this pathway, is bound
by a multiprotein “destruction” complex, which consists of
Axin, adenomatous polyposis coli (APC), and serine/threonine
kinases glycogen synthase kinase 3β (GSK3β) and casein kinase
1α (CK1α). This destruction complex phosphorylates β-catenin,

targeting it for ubiquitination and ultimately proteosomal
degradation. However, when the pathway is activated by the
binding of Wnt ligands to Frizzled and LRP5/6 receptors,
the destruction complex is disrupted, enabling β-catenin to
accumulate within the cytoplasm and translocate to the nucleus,
where it interacts with members of the T-cell factor/lymphocyte
elongation factor (TCF/LEF) family to activate transcription of
target genes (Gammons and Bienz, 2018) (Figure 1).

The canonical Wnt pathway has an established role in
osteogenesis and skeletal formation by functioning as amolecular
switch regulating lineage commitment between osteogenesis
and chondrogenesis (Hill et al., 2005; Topol et al., 2009).
During development, inhibition of canonical Wnt signaling
through conditional deletion of β-catenin from limb and head
mesenchyme using Prx1-CreERT, or conditional deletion from
skeletogenic mesenchyme using Dermo1-Cre, inhibits bone
formation and results in early osteoblast differentiation arrest
(Day et al., 2005; Hill et al., 2005). Osteoblastogenesis halts at
the osteochondral progenitor stage and cells differentiate into
chondrocytes, resulting in the formation of ectopic cartilage
(Day et al., 2005; Hill et al., 2005). Although cells express
Runx2, an early marker of the osteoblast lineage, they fail
to express osterix, indicating that these cells are incapable of
committing to an osteogenic fate (Day et al., 2005; Hill et al.,
2005). In vitro experiments inhibiting canonical Wnt signaling in
mesenchymal progenitor cells provide similar findings (Hill et al.,
2005).
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Canonical Wnt signaling also plays a key role in directing
osteogenesis during intramembranous repair (Kim et al.,
2007). Using a transcortical defect model, which heals
through intramembranous ossification, inhibition of Wnt
signaling through adenoviral expression of Dkk1 prevented
the differentiation of osteoprogenitor cells into osteoblasts and
significantly reduced bone regeneration compared to controls
(Kim et al., 2007). Conversely, activating the canonical Wnt
pathway through deletion of pathway inhibitors (sclerostin or
Axin2) significantly improved intramembranous bone formation
(McGee-Lawrence et al., 2013). Furthermore, treatment of bone
grafts with Wnt3a protein restored the osteogenic potential of
aged bone grafts and promoted intramembranous healing of
critical-sized defects in mouse calvaria and rabbit ulna (Leucht
et al., 2013).

Less work has been done to determine the role of canonical
Wnt signaling during endochondral bone formation and repair
since traditionally the Wnt pathway is thought to promote
direct osteogenesis. However, the mounting data demonstrating
chondrocytes can directly form bone in development and repair
(Bahney et al., 2014; Yang et al., 2014; Zhou et al., 2014;
Jing et al., 2015; Park et al., 2015; Houben et al., 2016; Hu
et al., 2017) suggests that canonical Wnt signaling may have a
functional role in chondrocyte-to-osteoblast transdifferentiation.
This was directly tested recently by Houben et al. who
showed conditional deletion of β-catenin in col10a1-expressing
hypertrophic chondrocytes resulted in significantly reduced
bone, whereas stabilized β-catenin produced osteopetrotic tissue
during endochondral development (Houben et al., 2016).

Since fracture repair in many ways recapitulates bone
development, canonical Wnt signaling may play a similar role
in regulating chondrocyte-to-osteoblast transformation during
endochondral repair. Indeed, during endochondral healing,
nuclear localization of β-catenin was seen in hypertrophic
chondrocytes at the fracture callus Transition Zone, indicating
that these cells undergo active canonical Wnt signaling (Hu
et al., 2017). RT-qPCR analysis of fracture calli revealed that
numerous Wnt ligands, receptors, and transduction machinery
are expressed during fracture repair (Chen et al., 2007; Leucht
et al., 2008). Huang et al. demonstrated that inhibition of
Wnt/β-catenin signaling in chondrocytes, using an 82-amino-
acid peptide called Inhibitor of β-catenin/TCF (ICAT) driven by
col2a1 expression, delayed cartilage formation and reduced bone
formation (Huang et al., 2012b). Similarly, activation of canonical
Wnt signaling through treatment with lithium chloride enhanced
bone formation (Chen et al., 2007). Interestingly, enhanced bone
regeneration was only observed when the Wnt pathway was
activated at later time points, which corresponds biologically
with chondrocyte-to-osteoblast transformation (Chen et al.,
2007). Together, these data suggest that canonical Wnt
signaling may play a role in regulating chondrocyte-to-osteoblast
transformation during fracture healing.

The evidence outlined above are derived primarily from pre-
clinical studies and in vitro systems. However, it is likely that the
canonical Wnt pathway plays a similarly critical role in humans.
Numerous human bone diseases are associated with mutations
to components of the canonical Wnt pathway (Regard et al.,

2012). Predisposition to osteoporosis has been associated with
genomic polymorphisms in or close to Wnt/β-catenin signaling
components (Regard et al., 2012). Loss-of-function mutations
in the Wnt receptor LRP5 are associated with osteoporosis
pseudoglioma (OPPG) syndrome and juvenile osteoporosis and
gain-of-function mutations in the same receptor result in the
opposite phenotype of high bone mass and enhanced bone
strength (Einhorn, 2010; Regard et al., 2012). Sclerosteosis is
a bone disease characterized by an overgrowth of bone and
is caused by mutations in the gene and enhancer regions of
the Wnt/β-catenin antagonist sclerostin (SOST) (Einhorn, 2010;
Regard et al., 2012). Furthermore, the canonicalWnt pathway has
been implicated in the context of human fracture repair since β-
catenin and sclerostin levels have been shown to increase (Chen
et al., 2007; Sarahrudi et al., 2012).

The canonical Wnt pathway is primed for translation.
Numerous Wnt pathway regulators are being developed and
several are already in clinical trials. Themajority of these pathway
modulators serve to activate the canonical Wnt pathway by
neutralizing pathway inhibitors such as Dkk1 and sclerostin
(Canalis, 2013). This indirect approach to pathway activation
has been adopted primarily because direct pathway activation
through treatment with Wnt ligands is clinically-irrelevant.
Endogenous Wnts are hydrophobic due to palmitoylation, a
form of lipidation required for the intracellular trafficking and
full activation of Wnts (Willert et al., 2003; Takada et al., 2006;
Janda et al., 2012). This makes Wnts challenging to extract and
purify, requires that they be delivered using special liposome-
based systems, and significantly increases the cost of treatment
(Morrell et al., 2008). Fortunately, several of the Wnt pathway
modulators acting to neutralize pathway inhibitors have shown
promising osteogenic effects during clinical trials.

Of the Wnt pathway regulators currently in development,
Romosozumab is closest to attaining FDA approval and is
currently in Phase III clinical trials for treating osteoporosis
(Regard et al., 2012; Canalis, 2013). It is a humanizedmonoclonal
antibody that binds to and neutralizes the Wnt inhibitor
sclerostin (Canalis, 2013). Studies show that treatment with
Romosozumab significantly increases bone mineral density and
reduces incidence of osteoporotic fractures (Canalis, 2013). Wnt
pathway regulators, such as Romosozumab, could readily be
repurposed for the context of fracture repair. However, the
optimal dosage, timing, and the method of treatment still need
to be determined.

Notch
Like, the canonical Wnt pathway, the functional roles of Notch
signaling suggest it as a candidate regulator of chondrocyte-
to-osteoblast transformation. Activation of this pathway begins
when the Notch transmembrane receptor binds to membrane-
bound ligands (Delta or Jagged) on the surface of neighboring
cells. This triggers the proteolytic cleavage of the Notch
intracellular domain (NICD) by y-secretase. NICD then
translocates to the nucleus where it forms a complex with and
activates the transcription factor CSL, which recruits its co-
activator Mastermind-like (MAML) and initiates transcription of
target genes (Lin and Hankenson, 2011) (Figure 1).
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Notch signaling has been shown to promote
osteoblastogenesis. In vitro inhibition of Notch signaling in
mouse MSCs impaired osteoblast differentiation as assessed
by alizarin red staining for matrix mineralization (Dishowitz
et al., 2013). In vivo, gain-of-function Notch signaling in
osteoblasts through the overexpression of NICD resulted in
abnormally dense or osteosclerotic bone attributed to increased
cell proliferation of immature osteoblasts (Engin et al., 2008).
Similarly, loss-of-function Notch signaling in osteoblasts,
through mutations to y-secretase, led to late-onset osteoporosis
(Engin et al., 2008).

Notch signaling also appears to play a role in promoting
hypertrophic maturation of chondrocytes. During development,
inhibition of Notch signaling in chondrocytes impaired terminal
stages of endochondral ossification in the limb cartilage,
resulting in shorter limbs with an increased hypertrophic zone
and reduced bone (Hosaka et al., 2013). In the context of
disease, Notch signaling may promote osteoarthritis (OA), which
resembles pathological activation of endochondral ossification
(Hosaka et al., 2013). Nuclear localization of the intracellular
domains of Notch-1 and -2 was observed in chondrocytes
in mouse and human OA articular cartilage, indicating
active Notch signaling in these cells (Hosaka et al., 2013).
Functionally, inhibition of Notch signaling in chondrocytes
conferred resistance to OA development in the knee joint
(Hosaka et al., 2013).

Notch signaling has also been shown to play an important
role during fracture repair. Notch signaling is upregulated
during both intramembranous and endochondral ossification,
but data suggest it is more highly activated during endochondral
ossification (Dishowitz et al., 2012). During endochondral
ossification, Notch signaling decreases as progenitors
differentiate into chondrocytes and as chondrocytes mature
to hypertrophy. However, mature hypertrophic chondrocytes at
the Transition Zone re-expressed Jag1 and NICD2, indicating
that these cells have re-activated the Notch pathway (Dishowitz
et al., 2012). Whether the Notch pathway plays a functional
role in regulating chondrocyte-to-osteoblast transformation
is unknown. However, systemic inhibition of Notch signaling
using the Mx1-Cre;dnMAMLfl/− mouse impaired fracture
healing primarily due to a prolonged inflammatory phase,
decreased cartilage callus formation, and decreased osteoblast
and osteoclast cell density (Dishowitz et al., 2013).

Hedgehog Signaling
The Hedgehog (Hh) pathway is essential to osteogenesis.
When this pathway is inactive, cell surface receptor Patched
(Ptch) prevents transmembrane protein Smoothened (Smo)
from entering the primary cilia. This results in the proteolytic
processing of Gli transcription factors into a repressor form
(GliR). GliR then enters the nucleus and prevents Hedgehog
target gene expression. Hedgehog signaling is activated by the
binding of Hh ligands to Patched, thus relieving Patched-
mediated suppression of Smoothened through Patched
endocytosis. Smoothened enters the primary cilia where
it prevents Gli transcription factors from being processed.
Thus, Gli remains in its full-length, active form (GliA), which

translocates to the nucleus and activates expression of Hedgehog
target genes (Lin and Hankenson, 2011) (Figure 1).

Of the three Hedgehog homologs, Sonic hedgehog
(Shh) and Indian hedgehog (Ihh) have been implicated in
osteoblastogenesis (Ehlen et al., 2006). Shh acts at early stages
of development to direct patterning and growth (Zhu et al.,
2008). Ihh is involved at later stages of endochondral ossification
during limb development and consequently has been studied
in greater depth in the context of bone formation and repair
(Ehlen et al., 2006). Indian hedgehog is a central regulator
of skeletogenesis and is required for osteoblastogenesis in
endochondral, but not membranous bones (Kronenberg, 2003;
Hill et al., 2005; Lin and Hankenson, 2011). Ihh is primarily
expressed by pre- and early hypertrophic chondrocytes, where it
controls proliferation and the onset of chondrocyte hypertrophy
(St-Jacques et al., 1999; Long et al., 2001, 2004; Maeda et al.,
2007). During development, chondrocyte expression of Ihh
triggers Runx2 expression in the periosteum, thus coupling
chondrocyte differentiation/maturation with osteoblastogenesis
(Hill et al., 2005; Ehlen et al., 2006).

Like canonical Wnt signaling, evidence suggests that the
Hedgehog pathway also serves as a molecular switch between
osteogenesis and chondrogenesis. Chimeric embryos derived
from Smoothened null and wild type embryonic cells exhibited
abnormal bone collar formation (Long et al., 2004). Whereas,
wild type cells underwent normal osteoblast differentiation,
adjacent mutant cells failed to differentiate into osteoblasts
and instead exhibited chondrocyte morphology, deposited
cartilaginous matrix and expressed chondrocyte markers
(collagen type II and X) (Long et al., 2004).

During development, Hedgehog signaling has also
been shown to play an important role in trabecular bone
formation. Inhibition of Hedgehog signaling through deletion of
Smoothened in chondrocytes prevented formation of the primary
spongiosa (Long et al., 2004). This loss in trabecular bone
formation correlated with lost expression of the Hedgehog target
gene, Patched1, at the chondro-osseous junction, suggesting
that Hedgehog signaling promotes chondrocyte-to-osteoblast
transformation (Long et al., 2004).

The Hedgehog pathway has also been implicated in
regulating chondrocyte-to-osteoblast transformation during
post-natal endochondral bone growth. Gli1-CreERT2 Hedgehog
reporter mice demonstrated active Hedgehog signaling in
hypertrophic chondrocytes and osteoprogenitors at the chondro-
osseous junction of the growth plate (Haraguchi et al., 2018).
Furthermore, deletion of Ihh from growth plate chondrocytes in
post-natal mice resulted in continuous loss of trabecular bone
with progression of age (Maeda et al., 2007).

Hedgehog signaling has been shown to promote osteogenesis
during skeletal homeostasis. Systemic inhibition of Hedgehog
signaling through treatment with cyclopamine decreased
bone mass in adult mice (Ohba et al., 2008). In contrast,
enhanced bone formation, was observed with forced activation
of Hedgehog signaling in mature osteoblasts through global
Patched1 haploinsufficiency or deletion (Ohba et al., 2008).
Interestingly, enhanced Hedgehog activity also resulted
in excessive bone resorption due to the role of Hedgehog
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signaling in promoting osteoclastogenesis (Mak et al.,
2008).

Evidence suggests that the hedgehog pathway promotes
endochondral repair as signaling is upregulated during fracture
healing (Liu et al., 2017). Furthermore, Gli1 reporter mice
demonstrated that cells actively signaling through the hedgehog
pathway contribute to both chondrocytes and osteoblasts
during fracture healing (Shi et al., 2017). Inhibition of the
Hedgehog pathway through treatment with a systemic Hedgehog
inhibitor GDC-0449, delayed fracture healing (Liu et al., 2017).
Chondrogenesis was unaffected, suggesting that the effects were
due to Hedgehog regulation of chondrocyte transformation
(Liu et al., 2017). In contrast, activation of Hedgehog signaling
through local administration of a Hedgehog agonist known as
Smoothened Agonist (SAG) accelerated endochondral repair due
to increased chondrocyte proliferation, an enlarged cartilaginous
callus, and an increased number of cells expressing osteoblast
markers within the bony callus (Kashiwagi et al., 2016).

VASCULATURE REGULATION OF
CHONDROCYTE-TO-OSTEOBLAST
TRANSFORMATION

The vasculature plays a critical role during fracture repair.
Whereas, the normal rate of impaired healing is 10–15%,
this percentage increases to 46% when fractures occur in
conjunction with severe vasculature injury (Bahney et al.,
2015). The role of the vasculature begins at the outset of
injury during hematoma formation where it helps to create
the growth factor rich fibrin blood clot upon which periosteal
stem cells differentiate to chondrocytes under a low pH, high
lactate microenvironment (Wray, 1964; Xing et al., 2010a). After
chondrogenic differentiation, the cartilage anlage is avascular and
chondrogenic maturation happens in the absence of a regulatory
role from the vasculature (Gerber et al., 1999; Tatsuyama et al.,
2000; Hu et al., 2017).

In the later stages of repair, blood vessels are recruited into the
cartilage fracture callus by hypertrophic chondrocytes expressing
vascular endothelial growth factor (VEGF) (Gerber et al., 1999;
Zelzer et al., 2002; Hu et al., 2017) and placental growth factor
(PlGF) (Maes et al., 2006). Histologically, the cartilage to bone
transition in the fracture callus occurs around this invading
vasculature (Hu et al., 2017). Importantly, spatiotemporal
expression of osteogenic genes and pluripotency transcription
factors occurs in hypertrophic chondrocytes adjacent to the
vasculature, suggesting that the vasculature plays a role in
initiating chondrocyte-to-osteoblast transformation (Hu et al.,
2017).

Growth Factor Secretion
Endothelial cells from the vasculature may functionally
contribute to phenotypic modulation of the chondrocyte
phenotype through secretion of pro-osteogenic growth factors.
For example, it has been established that vascular tissues are a
direct endogenous source of BMPs (Yu et al., 2010; Matsubara
et al., 2012). Functionally it has been shown that secreted factors

from vascular endothelial cell conditioned media were capable
of inducing matrix mineralization and up-regulating the classic
osteogenic gene osteocalcin (Bahney et al., 2014). It is likely
that BMP expression contributed to this phenotype (Bahney
et al., 2014). However, more recently it was also shown that
the same vascular endothelial cell conditioned media induced
expression of pluripotency transcription factors (Sox2, Oct4,
Nanog) indicating that an additional factor may have a role in
activating a stem-like state (Hu et al., 2017). While the complete
secretome of vascular endothelial cells during fracture healing
has not been detailed, it is known that this secretome is site
specific (Nolan et al., 2013; Rafii et al., 2016). It is possible that
fracture callus endothelial cells secrete factors other than BMP
that may play a role in directing osteogenesis or chondrocyte
plasticity.

Delivery of Macrophages
The vasculature is also responsible for delivering inflammatory
cells to the fracture callus. These include circulatory
macrophages, which are recruited by pro-inflammatory
cytokines [Tumor necrosis factor (TNFα), Interleukin-1β
(IL-1β), and IL-6] that activate a pro-inflammatory (M1)
macrophage state (Wray, 1964). This pro-inflammatory phase
has been shown to improve fracture repair by promoting cell
proliferation and stem cell differentiation (Xing et al., 2010b;
Wang et al., 2013).

While this inflammatory response is necessary for proper
healing, it must be resolved in order for healing to progress
(Wang et al., 2013). A prolonged pro-inflammatory state can
delay fracture repair and is an underlying factor in impaired
healing in elderly animals (Lu et al., 2008; Xing et al., 2010a,b;
Abou-Khalil et al., 2014; Baht et al., 2015). Resolution of
the pro-inflammatory state occurs when anti-inflammatory
cytokines and growth factors [IL-10, arginase, TGFβ, EGF,
PDGF, VEGF] push M1 macrophages toward the M2 phenotype
(Laskin, 2009). Thus, it is possible that macrophages and their
inflammatory resolution may help regulate chondrocyte-to-
osteoblast transformation.

MATRIX MECHANOBIOLOGY

Recent studies have demonstrated that the extracellular matrix
(ECM) plays an active role in regulating chondrogenic and
osteogenic cell fate decisions. Changes in cell fate elicit changes to
the surrounding matrix, thus producing a cycle of bi-directional
interactions between cells and their surrounding matrix, a
phenomenon known as “dynamic reciprocity” (Bissell et al.,
1982). This cross-talk is modulated by the structural, mechanical,
and biochemical cues provided by the ECM.

Remodeling of the ECM during endochondral ossification
is a dynamic process that transforms the cartilaginous matrix
into bone. This change in ECM contributes to the phenotypic
adaptation that occurs during chondrocyte-to-osteoblast
transformation. The major constituents of the cartilage ECM are
collagens, hyaluronan, proteoglycans, and glycoproteins (Gentili
and Cancedda, 2009). Collagens account for two-thirds of the
tissue’s dry weight, the most abundant of which is collagen type
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II (Eyre et al., 2006). Collagen type II is a fibril-forming collagen
that creates nonparallel crosslinks with collagens type IX and XI.
These crosslinks create a robust meshwork that gives cartilage
its tensile strength. Cartilage is further characterized by its high
aggrecan content (Martel-Pelletier et al., 2008). Aggrecan is
anchored to hyaluronan within the matrix and is a negatively
charged proteoglycan that attracts water (Roughley and Mort,
2014). This attraction of water to aggrecan creates osmotic
pressure within the tissue, making cartilage shock-absorbent and
resistant to high-load compression (Maldonado and Nam, 2013).
Together, the collagen II and aggrecan ultrastructure allows for
limited but necessary deformation under compressive forces
that contributes to distribution of nutrients across the avascular
tissue (Muir, 1995).

During endochondral ossification, there is a change in the
amount and type of collagens present in the ECM. Chondrocyte
hypertrophy is marked by the deposition of collagen type X
and the up-regulation of matrix metalloproteinase-13 (MMP-
13), which leads to the degradation of collagen II and aggrecan
(Ortega et al., 2004; Maldonado and Nam, 2013). The loss of
collagen II and aggrecan leads to a temporary reduction in
tensile strength and stiffness of the tissue, which changes the
mechanical microenvironment of chondrocytes and exposes the
cells to greater strains that may induce phenotypic changes
(Figure 3) (Stockwell, 1981; Ashman and Jae Young Rho,
1988; Rho et al., 1993; Chintala et al., 1994; Mente and
Lewis, 1994; Liu et al., 2016). Proteolysis of collagen II likely
contributes to chondrocyte hypertrophy and increased hydration
experienced by the cartilage matrix as a consequence of a
weakened fibril network losing the ability to resist the influx
of proteoglycan-attracted water (Dejica et al., 2012; Akkiraju
and Nohe, 2015). These changes in hydrostatic pressure could
enhance mineralization of cartilage through the diffusion of ions
(Tanck et al., 1999).

Numerous studies have demonstrated that chondrogenic
and osteogenic gene expression can be directly modulated
by compressive loading and microenvironmental stiffness,
as recently reviewed (Park et al., 2011; Lv et al., 2015;
Carrion et al., 2016). For example, MSCs subjected to cyclic
equibiaxial strain up-reguated expression of markers specific
to osteoblast differentiation and mineralization of the ECM
(Thomas and el Haj, 1996; Simmons et al., 2003; Liu et al.,
2016). Remarkably, when MSCs were subjected to both axial
compression and sheer stress, these led to an increase in
chondrogenic gene expression and elicited production and
accumulation of collagen II and proteoglycan (Schätti et al.,
2011; Huang et al., 2012a). Hadden et al. used adipose-
derived stem cells (ASCs) cultured on hydrogels with a defined
stiffness gradient to demonstrate a stiffness-dependent variation
in cellular morphology, migration, and differentiation (Hadden
et al., 2017). Furthermore, Engler et al confirmed stem cell fate
plasticity by culturing MSCs on matrices with varying tissue-
level elasticity. After several weeks of culture, MSCs committed
to the lineage dictated by matrix stiffness such that softer,
stiffer, and rigid matrices proved to be neurogenic, myogenic,
and osteogenic, respectively (Engler et al., 2006). However,
findings by Jha et al. suggested that high affinity adhesive

ligands can serve as a substitute for a rigid matrix likely by
signal transduction following focal adhesion assembly (Jha et al.,
2014).

In the midst of an altering microenvironment, hypertrophic
chondrocytes begin to predominantly express collagen type
X. In contrast to the fibril-forming properties of collagen II,
collagen X is a network-forming collagen that creates “basket
weave-like” structures (Tampieri and Sprio, 2016). This collagen
X ultrastructure is proposed to functionally compartmentalize
matrix vesicles containing mineral and newly expressed alkaline
phosphatase within the hypertrophic cartilage ECM (Kwan et al.,
1997). Interactions between collagen X and matrix vesicles
activate the influx of Ca2+ into matrix vesicles thus promoting
mineralization and increasing stiffness of thematrix (Shen, 2005).

Tissue architecture, or the manner in which matrix
components are structured and organized at the micro-
and nanoscale, has been shown to be a factor in naïve cell
differentiation. Thus, structural changes could be a driving factor
for chondrocyte-to-osteoblast transformation (Healy, 2004).
There have been numerous observations of matrix architecture
influencing stem cell fate by controlling cell engagement
with surrounding matrix and neighboring cells (Guilak et al.,
2009; Ahmed and ffrench-Constant, 2016). Moreover, matrix
architecture can alter cell surface receptor and cytoskeletal spatial
arrangement subsequently altering ligand signaling (Ekerdt et al.,
2013). For example, Lu et al. have shown that collagen type II
enhances chondrogenesis in ASCs by affecting cell shape and
size through the β1 integrin-mediated Rho A/Rock signaling
pathway (Lu et al., 2010).

Likewise, research groups have also shown that tissue
topography has the ability to guide mesenchymal stem cell
fate to either chondrogenic or osteoblastic phenotypes. Shong
et al. demonstrated the synergistic effect of microtopography
and biochemical supplements to direct MSC fate toward an
osteogenic phenotype (Guilak et al., 2009; Song et al., 2015).
Additionally, work by Uskoković and Desai suggests that
topography may potentially be more of a dominant factor in
cell/material surface interaction than the surface chemistry or
stiffness (Uskoković and Desai, 2014).

Matrix as a Growth Factor Reservoir
The bioavailability, local concentration, and stabilization
of growth factors (GFs) within the ECM of cartilage are
primarily modulated via electrostatic interactions between the
negatively charged sulfate groups of proteoglycans and the
positively charged surfaces of signaling molecules (Tampieri
and Sprio, 2016). Moreover, GFs are immobilized by binding to
heparan sulfate glycosaminoglycans, for example; Chintala et al.
demonstrated that fibroblast growth factor (FGF) has a high
affinity to heparan sulfate in the matrix of growth plate cartilage
(Chintala et al., 1994). Similarly, Martino et al. identified various
GFs from the PDGF, VEGF, TGF-β, and neurotrophin families
that possess heparin-binding domains (Martino et al., 2013).

As chondrocytes mature into hypertrophic chondrocytes, they
secrete VEGF to stimulate angiogenesis, alkaline phosphatase
to induce mineralization, and BMPs to promote osteogenesis
(Bahney et al., 2014). These growth factors are retained
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FIGURE 3 | Morphological, compositional, and mechanical changes during endochondral ossification (EO). (A–D) HBQ histology (blue = cartilage, red = bone) of

representative tissues from a murine fracture callus throughout stages of healing: (A) cartilage, (B) transition zone, (C) trabecular bone, and (D) cortical bone. Scale

bar = 200µm. (E) Tissue matrix components and matrix-bound growth factors corresponding to the location and phases of EO (Chintala et al., 1994; Shen, 2005;

Eyre et al., 2006; Martel-Pelletier et al., 2008; Maldonado and Nam, 2013; Martino et al., 2013; Tampieri and Sprio, 2016; Tomlinson et al., 2016). (F) Log scale

difference in elastic modulus of human samples corresponding to each tissue matrix listed above. Solid line represents normal ossification, dotted line accounts for the

initial decline in elastic modulus (osteoarthritis model) (Ashman and Jae Young Rho, 1988; Rho et al., 1993; Mente and Lewis, 1994; Silver et al., 2002; Pal, 2014).

within the matrix due to the combination of collagen X in
compartmentalizing matrix components during endochondral
ossification and through interaction with the heparin and/or
sulfated proteoglycans (Shen, 2005). Thus, the dynamic
promiscuity of the ECM in hypertrophic cartilage likely has
a role in cellular signaling affecting physiological functions of
endochondral ossification.

For these reasons tissue engineers in recent years have begun
to fabricate scaffolds and microparticles that are believed to
mimic the release kinetics of GFs found in the cartilage ECM
during endochondral ossification. Jeon et al. harnessed the high
affinity GFs have to heparin by incorporating heparin into
photocrosslinkable alginate gels, recapitulating matrix-growth
factor interactions allowing for controlled and sustained release
of therapeutic proteins (Jeon et al., 2011). Exploiting the
well-documented affinity of proteins to hydroxyapatite (HAp),
Dang et al. have fabricated HAp-based microparticles that
exhibit sustained delivery of BMP alone as well as controlled
dual delivery of BMP with TGF-β to enhance bone tissue
engineering via endochondral ossification (Bernardi et al., 1972;
Dang et al., 2016a,b). Likewise, glucosamine has also been
incorporated into engineered scaffolds because of its effects on
chondrocyte proliferation, matrix synthesis, and gene expression
via modulation of TGF-β expression levels (Varghese et al., 2007;
Murab et al., 2015).

As permeability is typically very low in cartilage, this further
accentuates the ECM’s role in acting as a reservoir for latent
growth factors (Pei et al., 2011). However, in the context of OA, a
degenerative joint disease that exhibits endochondral ossification
signaling, cartilage ECM degradation alters TGF-β signaling due
to the displacement of TGF-β by fluid influx (Blaney Davidson
et al., 2007). In native cartilaginous tissue, studies have shown
that the loss of latent TGF-β induces chondrocyte hypertrophy
and osteogenesis (Wu et al., 2016). Similarly, MSCs seeded onto
tissue-engineered cartilage undergo hypertrophic differentiation
in the presence of TGF-β, while in the absence of TGF-β MSCs
undergo articular cartilage differentiation (Chawla et al., 2017).
To that end, we can presume that changes in the properties of
the matrix, whether directly or indirectly, have a significant role
in the transformation of cartilage to bone during endochondral
ossification.

DEVELOPMENTAL ENGINEERING TO
RECAPITULATE ENDOCHONDRAL
OSSIFICATION

Bone injuries are extremely common with ∼15 million
fracture cases and over 2 million bone grafting procedures
per year (Yelin et al., 2016). The current clinical gold
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standard for stimulating bone regeneration is to promote
intramembranous bone formation through application of bone
grafts, increased biomechanical stability of the fracture with
additional orthopedic hardware, or less commonly, through
implantation of BMP2-soaked scaffolds (INFUSE R©). Given the
clinical downsides of each, there is an unmet clinical need for
regenerative techniques that could improve vascularized bone
regeneration.

While the established clinical approaches to bone regeneration
promote intramembranous bone formation, bones both develop
and heal through the process of endochondral ossification
during which the cartilage callus creates an angiogenic and
osteoconductive scaffold for bone formation. Recent pre-
clinical studies have capitalized on this, proposing therapeutic
strategies that parallel the natural healing process by utilizing
engineered hypertrophic cartilage grafts to stimulate bone
regeneration (Scotti et al., 2010, 2013; Farrell et al., 2011;
Sheehy et al., 2013, 2014; Bahney et al., 2014; Bourgine
et al., 2014; Bhattacharjee et al., 2015; Dang et al., 2017).
Translating these pre-clinical studies may be one strategy
to improve clinical outcomes (Nishitani and Schwarz,
2014).

Further, new mechanistic understanding of endochondral
ossification could have a significant impact on the design of
novel therapeutic approaches to fracture healing and bone
regeneration. Since we now understand chondrocytes can be a
direct precursor of osteoblasts (Yang et al., 2014; Zhou et al., 2014;
Jing et al., 2015; Park et al., 2015; Hu et al., 2017) stimulating
transformation of chondrocytes into osteoblasts becomes a
clinically-relevant therapeutic approach. Very little work has
been done to understand how chondrocytes become osteoblasts

during endochondral ossification. If we understood the extrinsic

mediators of chondrocyte to osteoblast transformation, we would
not only be able to engineer an ideal treatment for hypertrophic
nonunions, but we could also accelerate fracture healing under
normal conditions.
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