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There is increased interest in recapitulating aspects of development when designing new tissue engineering
strategies. Long bones and their epiphyses are formed through endochondral ossification, a process by which a
cartilage template develops in response to genetic and environmental cues to generate a bone organ. The objective
of this study was to evaluate the capacity of engineered cartilage templates to regenerate osteochondral (OC)
defects created in the femoral condyle of skeletally mature rabbits. To this end, bone marrow-derived mesen-
chymal stem cells (BMSCs) were encapsulated in RGD (arginine/glycine/aspartic acid)-functionalized, y-
irradiated alginate hydrogel and chondrogenically primed in vitro to engineer cartilage templates tailored for
OC defect regeneration. While comparable levels of healing were observed in the bony region of empty and
treated groups, the quality of healing was notably different in the chondral region of these defects. Mechanical
testing revealed that treatment with engineered cartilage templates promoted the development of a stiffer repair
tissue at the articular surface, which correlated with histomorphometric analysis demonstrating the formation of
a more hyaline cartilage-like repair tissue. Next, a computational mechanobiological model was used to better
understand how local environmental cues were regulating the regenerative process in vivo. This model predicted
that higher strains and lower levels of oxygen in the chondral region of the defect were preventing cartilage
template progression along the endochondral pathway, with hyaline cartilage or fibrocartilage eventually
forming depending on local strain magnitudes. In contrast, higher levels of oxygen and lower magnitudes of
strain in the osseous region of the defect facilitated progression of the engineered cartilage template along an
endochondral pathway. In conclusion, this study demonstrates that engineered cartilage templates can enhance
OC defect regeneration, pointing to the potential for developmentally inspired soft tissue templates, engineered
using BMSCs, to regenerate damaged and diseased joints.
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Impact Statement

Successfully treating osteochondral defects involves regenerating both the damaged articular cartilage and the underlying
subchondral bone, in addition to the complex interface that separates these tissues. In this study, we demonstrate that a
cartilage template, engineered using bone marrow-derived mesenchymal stem cells, can enhance the regeneration of such
defects and promote the development of a more mechanically functional repair tissue. We also use a computational
mechanobiological model to understand how joint-specific environmental factors, specifically oxygen levels and tissue
strains, regulate the conversion of the engineered template into cartilage and bone in vivo.
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Introduction

SUCCESSFULLY TREATING OSTEOCHONDRAL (OC) defects
involves regenerating both the damaged articular carti-
lage and the underlying subchondral bone, in addition to
the complex interface that separates these tissues. Current
treatments such as mosaicplasty are limited by complica-
tions such as donor-site morbidity, matching the topography
of the damaged site, and poor graft integration.'™ This has
motivated the development of tissue-engineered implants to
treat these clinically challenging defects.*> To this end,
there has been increased interest in recapitulating aspects of
tissue or organ development when designing new regener-
ative strategies. All long bones, including their epiphyses,
are formed, in part, by the process of endochondral ossifi-
cation.®” Their development involves the condensation of
stem cells, which differentiate into chondrocytes to form a
cartilage model/template. The chondrocytes enlarge and
become hypertrophic, secreting collagen type X and an-
giogenic factors, and their surrounding extracellular matrix
(ECM) is invaded by vasculature.® The subsequent delivery
of oxygen, growth factors, and other regulatory cues through
this vasculature, as well as the recruitment of osteopro-
genitor cells, promotes osteogenesis and bone formation.’
During postnatal development, articular cartilage also acts
as a surface growth plate for the longitudinal, radial, and
lateral growth of the epiphyseal bone.® Therefore, cartilage
acts as the precursor tissue to the cancellous bone, sub-
chondral bone, calcified cartilage, and articular cartilage that
make up a mature long bone organ. Bone marrow-derived
mesenchymal stem cells (BMSCs) have been used to engi-
neer both articular cartilagelo_12 and hypertrophic cartilage
templates for endochondral bone tissue engineering.”'>~'
Under appropriate environmental conditions, this suggests
that cartilage tissue engineered using BMSCs could provide
a template for the development of the different components
of the OC unit. To date, no tissue engineering strategy exists
to successfully regenerate the complex bone and articular
and calcified cartilage interface within damaged joints.
While it is well established that cartilaginous tissues en-
gineered using BMSCs can progress along the endochon-
dral pathway and mineralize,”!3-1%17 certain environmental
factors such as oxygen,'®*2° or the application of joint-like
mechanical loading,'** can modulate this process and
promote the development of a more stable chondrogenic
phenotype. In situ, the oxygen tension of bone ranges from
5% to 12.5% pO,, whereas cartilage resides in a more
hypoxic environment with levels ranging from 1% to 5%
p0O,.2* BMSC-laden constructs maintained at or below 5%
pO, undergo enhanced chondrogenesis with a suppression
of hypertrophy, whereas culture at higher oxygen concen-
trations tends to direct BMSCs toward an osteogenic line-
age.'”?>2° Physiological levels of hydrostatic pressures
increase transforming growth factor-f (TGF-P) expression,
regulate ECM synthesis,”"*’?° and suppress calcium de-
position within BMSC-laden constructs,?>3° however, ap-
plication of levels outside the physiological range can have
negative effects.”” Other mechanical cues such as dynamic
compression can also enhance chondrogenesis of MSCs and
suppress their tendency to progress along an endochondral
pathway.?'**3!-32 It would be reasonable to conclude that
such environmental cues will also play a central role in
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determining the fate of tissues engineered using BMSCs
once they are implanted in vivo.

Cartilage and bone tissue engineering strategies often in-
volve the encapsulation of cells into hydrogels, providing them
a niche to proliferate and/or differentiate into tissue-specific
cells. Alginate is a naturally derived, biocompatible hydrogel
that supports cell differentiation and ECM synthesis and is
often used in bone and cartilage tissue engineering.*>*! It does
not contain specific ligands for cell adhesion; however, intro-
ducing peptides such as the arginine/glycine/aspartic acid
(RGD) sequence has been shown to facilitate cellular adhesion.
This has been shown to support cellular proliferation, an os-
teogenic phenotype,** and promote endochondral bone for-
mation.'* Alginate is generally slow to degrade, which can be a
limitation for bone development, as vascularization and the
subsequent delivery of nutrients can be impeded or inhibited.*®
Strategies to accelerate degradation include altering the mo-
lecular weight through y-irradiation and/or oxidation of the
material,*>~** shown to enhance the capacity of these hydrogels
to support tissue regeneration.***>

The first objective of this study was to tissue engineer a
cartilage template using BMSCs and to then evaluate its ca-
pacity to repair a critically sized OC defect in the femoral
condyle of skeletally mature rabbits. To this end, BMSCs were
encapsulated in an RGD-functionalized, y-irradiated alginate
hydrogel and chondrogenically primed in vitro to engineer
cartilage templates tailored for OC defect regeneration. Our
hypothesis was that this cartilage template would undergo
spatially defined differentiation in vivo in response to the un-
ique environmental conditions within an OC defect, resulting in
the development of a repair tissue consisting of hyaline artic-
ular cartilage overlying a layer of bone formed via endochon-
dral ossification. A computational mechanobiological model
was then used to elucidate the environmental and mechanical
conditions in vivo to provide further insight into the factors
regulating the repair tissue phenotype.*®*’

Materials and Methods
Cell isolation and expansion

BMSCs were obtained from the femur of 4- to 6-month-old
lapine donors. Bone marrow was removed from the femoral
shaft and washed in high-glucose Dulbecco’s modified Eagle’s
medium (hgDMEM, GlutaMAX™; Biosciences, Ireland)
supplemented with 8% fetal bovine serum (Biosciences), 2%
rabbit serum (Sigma, Ireland), 1% penicillin (100 U/mL), and
streptomycin (100 pg/mL; Biosciences). A homogenous cell
suspension was achieved by triturating with an 18G needle. The
solution was centrifuged twice at 650 g for 5 min, with removal
of the supernatant. The resultant cell pellet was triturated and
the cell suspension was filtered through a 40 pm cell sieve
before plating at a density of 5x10° cells/cm® Following
colony formation, cells were trypsinized, counted, and replated
for further passage at a density of 5x 10* cells/cm?. All ex-
pansion was conducted at 5% oxygen tension and media were
changed twice weekly. Cells were embedded within the algi-
nate gel at the end of passage 2.

Engineering of the cartilage template

The cartilage template was prepared by dissolving RGD-y
alginate in sterile hgDMEM to make up a final concentration
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of 1.5% w/v. RGD-y alginate was made as follows: low-
molecular-weight sodium alginate (52,000 g/mol) was pre-
pared by irradiating Protanal LF 20/40 (196,000 g/mol;
FMC Biopolymer, Philadelphia, PA) at a gamma dose of 5
mrad.*> RGD-modified alginates were prepared by coupling
the GGGGRGDSP to the alginate by carbodiimide reaction
chemistry. Alginate (10g) was dissolved at 1% (w/v) in
MES buffer (pH 6.5). Sulfo-NHS (274 mg; Pierce, Rock-
ford, IL), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(484 mg; Sigma), and GGGGRGDSP peptide (100 mg; Al-
BioTech, Richmond, VA) were then added to the alginate so-
lution. After reacting for 24 h at 48°C, the reaction was stopped
by addition of hydroxylamine (0.18 mg/mL; Sigma), and the
solution was purified by dialysis against ultrapure deionized
water (MWCO 3500; Spectrum Laboratories, Rancho Dom-
inguez, CA) for 3 days, treated with activated charcoal (0.5 mg/
100 mL, 50-200 mesh; Fisher, Pittsburgh, PA) for 30 min, fil-
tered (0.22mm filter), and lyophilized.**>° The constructs
were formed by combining BMSCs, counted, and spun to form
a cell pellet, with the alginate, using a 16G needle to mix the
suspension with a final density of 2x 107 cells/mL. The algi-
nate/cell suspension was poured into a specifically designed 4%
agarose mold containing 50 mM CaCl, and allowed to crosslink
for 30 min at 37°C to produce 4 x4 mm cylindrical constructs.
Constructs were maintained in chondrogenic medium, con-
sisting of hgDMEM supplemented with penicillin (100 U/mL)/
streptomycin (100 pg/mL), 100 pg/mL sodium pyruvate,
40 pg/mL L-proline, 50 pg/mL 1r-ascorbic acid-2-phosphate,
1.5 mg/mL bovine serum albumin, 1 Xinsulin/transferrin/
selenium, 100 nM dexamethasone (all from Sigma-Aldrich,
Ireland), and 10ng/mL recombinant human TGF-B3
(ProSpec-Tany TechnoGene Ltd., Israel). Constructs were
cultured at 37°C with 5% oxygen for 32 days with medium
exchange twice weekly.

Biochemical analysis

Constructs were digested in papain (125 pug/mL) in 0.1 M
sodium acetate, S mM cysteine HCI, and 50mM EDTA (pH
6.0; all from Sigma-Aldrich) at 60°C under constant rotation
for 18 h. Total DNA content was quantified using the Hoechst
bisbenzimide 33258 dye assay (Sigma-Aldrich). Proteoglycan
content was estimated by quantifying the amount of sulfated
glycosaminoglycan (sGAG) in constructs using the di-
methylmethylene blue dye-binding assay (Blyscan, Biocolor
Ltd.), with a chondroitin sulfate standard. Total collagen
content was determined by measuring the hydroxyproline
content. Samples were hydrolyzed at 110°C for 18h in con-
centrated HCL (38%) and assayed using a chloramine-T as-
say with a hydroxyproline-to-collagen ratio of 1:7.69.”"

Cartilage template implantation

New Zealand white (6—8 months) rabbits were anesthetized
with ketamine/medetomidine maintained using isoflurane and
oxygen. The surgical sites were prepared by shaving and
washing with chlorhexidine surgical scrub and alcohol. Sur-
gical drapes were used to isolate the surgical sites. Defects
(4 x4 mm in diameter) were introduced in the medial femoral
condyle of the hind leg using a biopsy punch and a surgical burr.
The defects were lavaged with saline before implanting the
cartilage template. Two defects were made per rabbit (one in
each femur), constructs were implanted (n = 6) by press-fitting,

and empty defects served as controls (n=6). Postsurgery,
rabbits were permitted free activity with postoperative anal-
gesia buprenorphine hydrochloride, given for 3 days. Animals
were sacrificed after 3 months using pentobarbital. This pro-
tocol and study were reviewed and approved by the Ethics
Committee of Trinity College Dublin, Ireland.

Histology and immunochemistry

Constructs were fixed in 10% formalin (Sigma-Aldrich) for
48h. They were decalcified using ‘‘Decalcifying Solution-
Lite” (Sigma-Aldrich), then dehydrated through graded al-
cohols, embedded in paraffin, and sliced to 10 pm. Slices were
stained with 1% alcian blue 8GX (Sigma-Aldrich) in 0.1 M
HCI, pH 1 for sGAG, or with aldehyde fuchsin and 1% alcian
blue, pH 1. Collagen types I, II, and X were evaluated using a
standard immunohistochemical technique; sections were re-
hydrated and treated with chondroitinase ABC (Sigma-
Aldrich) in a humidified environment at 37°C to enhance
permeability of the ECM. This was followed by incubation in
goat serum to block nonspecific sites and the relevant primary
antibodies (mouse monoclonal; Abcam); collagen type I
(ab90395, 1:400), collagen type II (ab3092, 1:100), or colla-
gen type X (ab49945, 1:100) was applied overnight at 4°C.
Treatment with peroxidase preceded the application of the
secondary antibody (collagen type I and II, B7151, 1.5:200;
collagen type X, ab49760, 1:200) at room temperature for 1 h.
Thereafter, all sections were incubated with ABC reagent
(Vectastain PK-400; Vector Labs) for 45 min. Finally, sections
were developed with DAB peroxidase (Vector Labs) for
Smin. Positive and negative controls were included in the
immunohistochemical staining protocols.

Histological scoring

Histological and macroscopic blind scoring was con-
ducted by six impartial people in groups of two (n=3
scores). The wax-embedded sample was cut down the center
and sliced from the center of the defect. Two histological
slides (one from each side of the sample) were included in
the randomly selected histological slides for scoring, and an
average score was calculated. Histological and macroscopic
images were scored using a modified version of the
O’Driscoll score (Tables 1 and 2).

Mechanical testing

Indentation tests were performed using a single column Zwick
(Zwick, Roell, Germany) with a SN load cell. Unconfined
compression tests were carried out as previously described.”
Briefly, the repaired tissue was indented using an impermeable
metal indenter of 1 mm diameter to a depth of 50 um into the

TABLE 1. MACROSCOPIC SCORING

Surface smoothness of the cartilage surface

Smooth 0
Moderate 1
Irregular 2
Severe 3
Edge integration with native cartilage
Completely integrated 0
Partial 1
None 2
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tissue and held until relaxation. Subsequently, a dynamic test
was performed at 1 Hz, from this the amplitude of the dynamic
stress was extracted by dividing by the average force between the
peak and trough of 10 cycles by the cross-sectional area (CSA).
The mechanics of the repair tissue was assessed at the center
point, unless there was an uneven surface; in such cases, pref-
erence was given to the region with the most repair tissue slightly
left or right of the center of the defect site.

Microcomputed tomography

Microcomputed tomography (LCT) scans were performed
on the femoral condyle explants using a Scanco Medical
40 nCT system (Scanco Medical, Bassersdorf, Switzerland) to
visualize and quantify mineral deposition. Six condyles were
scanned per experimental and control group after 3 months
in vivo. Constructs were scanned in 50% EtOH, at a voxel
resolution of 30 um, a voltage of 70kVp, and a current of
114 pA. Reconstructed three-dimensional (3D) images were
generated to visualize the repaired bone. Quantification of

TABLE 2. HISTOLOGICAL SCORING

% Repair tissue that is hyaline

80-100 8
60-80 6
40-60 4
20-40 2
0-20 0
Articular surface continuity
Continuous and smooth 2
Continuous but rough 1
Discontinuous 0
Thickness of repair tissue compared with
host cartilage
81-120% of normal cartilage 2
51-81% of normal cartilage 1
0-50% of normal cartilage 0
Tidemark
Present 2
Incomplete 1
Absent 0
Integration of cartilage
Complete (integrated on both sides) 2
Partial 1
Poor (not integrated) 0
Degenerative changes in the repair tissue
Normal cellularity 2
Slight to moderate hypocellularity 1
or hypercellularity
Severe hypocellularity or hypercellularity 0
Degenerative changes in adjacent cartilage
Normal cellularity, no clusters, no fibrillations 3
Normal cellularity, mild clusters, superficial 2
fibrillations
Mild cellularity, moderate fibrillations 1
Severe changes in cellularity, moderate 0
fibrillations
Chondrocyte clustering
No clusters 2
<25% of cells 1
25-100% of cells 0
Total score 23
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mineralization within the defect site was performed by setting a
threshold of 210 (corresponding to a density of 399.5 mg hy-
droxyapatite/cm®) and calculating the bone volume within a
3.5x3.5 mm cylinder, which excluded the original bone.

Computational modeling

A previously developed computational model was used to
predict BMSC differentiation and tissue development in the
empty and treated defect.***”>*>* This model utilized an it-
erative procedure outlined in greater detail in a previous
study.>* Briefly, a finite element model was used to determine
the mechanical environment within the defect (Fig. 1a). The
dimensions and loading conditions of the condyle were ob-
tained from the literature.”>>® Angiogenesis and BMSC mi-
gration and proliferation were modeled using a lattice-based
approach.”® Similar to previous studies, blood vessel growth
was biased in the direction of the minimum principal
strain.*”> The results of the angiogenesis and cell migra-
tion models were then used as inputs to an oxygen diffusion
model. In this case, oxygen consumption from the cells was
modeled using Michaelis-Menten kinetics.*” > Cell differ-
entiation was predicted using a previously developed algo-
rithm, which assumed that the fate of BMSCs was dependent
on the local oxygen tension and substrate stiffness,°*-°2 while
the fate of cartilage was influenced by the local oxygen
tension and octahedral shear strain (Fig 1b, c). Of note for this
study is that cartilage can become hypertrophic if the oxygen
tension is high and the mechanical strain low. Finally, based
on previous studies,'’® it was assumed that the cartilage
subjected to chondrogenic conditions (specifically a low ox-
ygen tension) for a period of 10 weeks formed stable carti-
lage. This stable cartilage inhibited blood vessel growth and
was resistant to hypertrophy and endochondral ossification.

In accordance with the experimental model, tissue for-
mation was predicted over 12 weeks, where each iteration of
the model represented a 24-h period. In the empty defect
model, it was assumed that the defect was filled with
granulation tissue, which contained BMSCs. In the model of
the defect treated with an engineered cartilage template, on
implantation it was assumed that the encapsulated BMSCs
had undergone chondrogenic differentiation for 32 days
(equivalent to the preculture period described above). For
this reason, in this model, the defect was assumed to be
filled with chondrocytes at day O.

Statistical analysis

Results are presented as mean =+ standard deviation. Sta-
tistical analysis was performed with GraphPad Prism 5
software package (GraphPad). Experimental groups were
analyzed for significant differences using either a #-test or a
general linear model for ANOVA (analysis of variance).
Significance was accepted at a level of p <0.05.

Results

RGD-functionalized, y-irradiated alginate hydrogels
support the development of a cartilage template in vitro

Over 32 days of in vitro culture, the RGD-functionalized
and y-irradiated alginate hydrogels supported the develop-
ment of a cartilage-like tissue that stained positive for col-
lagen type II and sGAG deposition (Fig. 2c). sGAG and
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collagen accumulation was measured to be 166+28 and
123+ 10 pg, respectively. There was some positive staining
for collagen type X, indicating the early stages of hyper-
trophy in some areas of the cartilage template (Fig. 2c),
although negative staining for alizarin red (for calcium de-
position) and collagen type I demonstrated that the tissue
had not ossified to any extent in vitro (Fig. 2c). There was a
significant increase in mechanical properties of the template
over time in culture, from 2.39+0.94 to 7.35x1.25kPa
(Fig. 2b). Live/dead analysis was conducted at the end of the
culture period, which showed a cell viability of 84% within
the cartilage templates (data not shown).

Treatment of OC defects with an engineered
cartilage template results in the development
of a stiffer repair tissue

Macroscopically, there was no difference apparent be-
tween the treated group and empty control group (Fig. 3a,
b), as quantified using macroscopic scoring (Fig. 3c, d). In
both groups, there were instances of what appeared to be
both complete and partial filling of the defects. However,
mechanical testing identified that repair tissue was signifi-
cantly stiffer in defects treated with the cartilage template
compared with empty controls (Fig. 3e—g).

De novo bone tissue, as measured by pCT, was observed
within the OC defects. The reconstructed 3D scans dem-
onstrated mineralized tissue within the center of the defect,
with trabecular struts evident in the deeper regions of the

CRITCHLEY ET AL.

repair tissue (Fig. 4a, b). Complete bone repair was not
detected in either the empty or treated defects, and even in
the best examples of repair there was some evidence of
incomplete subchondral bone regeneration at the bone/car-
tilage interface. Quantitative analysis of the defect area re-
vealed no significant difference in overall levels of bone fill
between empty and treated defects (Fig. 4c, d).

Engineered cartilage templates promote the
development of a more hyaline cartilage-like
repair tissue in OC defects

All defects treated with engineered cartilage templates
stained intensely with alcian blue, indicating the development
of proteoglycan-rich tissue, with more variable staining ob-
served within the empty controls (Fig. 5a, b). The best repair
observed in the empty defects was fibrocartilaginous in nature,
staining positively for type I and type II collagen, while the
corresponding cartilage template-treated defects displayed a
more hyaline-like tissue with only minimal type I collagen
staining (Fig. Sa—d). The repair tissue stained weakly for type X
collagen, a marker for hypertrophy, in the best repair for both
empty and treated defects. However, there appeared to be
pericellular staining for collagen type X in the empty defects
that underwent poorer repair. Following blind evaluation of
histological sections, a significant difference was found in the
overall histological scores of empty and treated defects, with
superior repair observed in treated defects (Fig. 6a, b). In ad-
dition, a lack of cellular alignment is observed within the empty

a Empty b Cartilage Template G e
% ' g ‘
$ g
Empty Cartilage Template
Surface Integration
& &
& & |
Empty Cartilage Template
: Surface Smoothness
e P f Er e
-
251 81 - ———
&
| |

@ 204

g g &

- o

E 15 _|_ “E’ "

9 10 3

E 5 |

] 2 5]

a 54 el

w I_—l—_l
) Empty Cartilage Template : Empty Cartilage Template Empty Cartilage Template

FIG. 3. Macroscopic repair of best and worst for (a) control empty defects and (b) cartilage template, scale bar =2000 um.
Macroscopic scoring (n=6) for (¢) surface integration and (d) surface smoothness. (e-g) Mechanical testing at 3 months
(n=6 ***p<0.001, **p<0.01, t-test). Color images are available online.


https://www.liebertpub.com/action/showImage?doi=10.1089/ten.tea.2018.0046&iName=master.img-002.jpg&w=490&h=304

Downloaded by University of Illinois Chicago from www.liebertpub.com at 08/21/20. For personal use only.

CARTILAGE TEMPLATES TO TREAT OSTEOCHONDRAL DEFECTS 165

a Empty
:

o
&
5
=

.‘% ,4" g g&; ) =
Q ~

] y ) 2 o 2
5 'f?'C = %ﬁ'%@g"
7] e & s ]

= y 0 I3 G ,pa&i ey, .
b

g

L7

o

5

=

g

@

o

3

c

g 0.6

>

m 0.4+

0.0 T
Empty Cartilage Template

Em'pty Cartilage Template

FIG. 4. Three-dimensional reconstruction of the microcomputed tomography scans of the (a) empty defects and (b)
defects treated with cartilage templates. The insert image in the top-left of each shows the cross-sectional plane through the
defect. Quantitative analysis of (c) the ratio of bone volume to total volume within a defined cylinder within the defect site

and (d) total bone volume (scale bar=4 mm).

controls when compared with native cartilage. The cartilage
template-treated group generally exhibited normal cell mor-
phology and alignment more like that of native articular car-
tilage (Fig. 5d). Overall, the histomorphometric analysis
demonstrated that the cartilage template trended toward im-
proved repair in all parameters evaluated, with significant dif-
ferences observed for percentage tissue thatis hyaline (Fig. 6b),
integration of newly formed cartilage with surrounding carti-
lage (Fig. 6f), and a lack of degenerative changes in the adja-
cent tissue (Fig. 6h).

Computational predictions suggest that local levels

of oxygen availability and mechanical stimuli may play
a role in determining whether hyaline, fibrocartilage,
or hypertrophic cartilage forms within OC defects

The computational mechanobiological model predicted
the same patterns of tissue development as observed ex-
perimentally in both empty and treated defects. In models of
both empty and treated defects, bone and cartilage were
predicted to initially form in the osseous phase, while a
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FIG. 5. Alcian blue staining depicting the two best and two worst observed repair for two different (a) empty and (b)
cartilage templates (scale bar 2 mm). Immunohistochemical staining for collagen type II, I, and X portraying the worst,
intermediate, and best repair for (¢) empty and (d) cartilage templates (scale bar 200 um). Color images are available

online.

mixture of cartilage and fibrocartilage formed in the chon-
dral phase of the defect (Fig. 7). As the simulations pro-
gressed, in both groups, a bone front advanced toward the
chondral phase by means of endochondral ossification
(Fig. 7b). Similar to the experimental findings, a higher
quantity of cartilage was predicted at each time point in the
chondral phase of defects treated with engineered templates
(Fig. 7c). Conversely, in the empty defect simulation, a
higher quantity of fibrocartilage was predicted in the
chondral phase at each time point. In both models, there was
roughly the same quantity of bone predicted in the osseous
phase of the defect at weeks 4, 8, and 12 (Fig. 7d).
Similar patterns of bone formation predicted in the
models can be attributed to the fact that there was very little
difference in the spatial and temporal patterns of blood
vessel formation predicted in empty and treated defects
(Fig. 7a). In both models, blood vessels sprouted formed
from the cancellous bone and, over time, advanced toward
the surface of the defect. These similarities in the pattern of

vessel formation resulted in a similar oxygen profile in
empty and treated defects (Fig. 7a), which in turn supported
comparable levels of osteogenesis.

The differences in the tissues formed in the chondral
phase of the OC defect can be attributed, in part, to the
higher stiffness of the engineered template compared with
the granulation tissue that is assumed to initially fill the
empty defect. The result of this was that the cells within the
chondral phase of the scaffold-treated defect were subjected
to lower magnitudes of strain compared with in the empty
defect (data not shown). This, coupled with the hypoxic
environment, supported higher levels of cartilage develop-
ment compared with more fibrocartilage repair in empty
defects. The greater persistence of cartilage within the
chondral phase of the treated defects can be attributed to the
preculture stage. This ensured that more stable cartilage
(BMSCs chondrogenically stimulated for 32 days) had
formed within the chondral phase of the treated defects
compared with the empty defects. The result of this was
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that, as blood vessels advanced toward the chondral phase,
the cartilage in the treated defect was more resistant to
hypertrophy and endochondral ossification.

Discussion

The OC unit develops postnatally from a cartilaginous
precursor that undergoes endochondral ossification dur-
ing skeletal maturation.®®® Inspired by this developmental
process, herein we demonstrate that cartilaginous tem-
plates engineered using BMSCs encapsulated within RGD-

modified and gamma-irradiated alginate hydrogels can be
used to regenerate critically sized OC defects. While empty
OC defects are capable of undergoing spontaneous re-
pair,**% more hyaline-like cartilage tissue was observed in
defects treated with engineered soft tissue templates. Fur-
thermore, the repair tissue in treated defects was stiffer than
in empty controls. To provide a more mechanistic under-
standing of the regenerative process, we next used a com-
putational model to simulate tissue development in both the
empty and treated defects. This model provides evidence
demonstrating that local levels of oxygen availability and
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mechanical cues direct the fate of chondrogenically primed
BMSCs following implantation into an OC defect.
Cartilage templates were engineered in vitro by encap-
sulating BMSCs within RGD-modified and y-irradiated al-
ginate hydrogels and by stimulating these constructs with
TGF-B3 over 32 days in vitro. Such alginate hydrogels have
previously been shown to support endochondral bone for-
mation subcutaneously,’® and in this study, cartilaginous
tissues engineered within these gels also facilitated bone
regeneration and remodeling within the osseous phase of the
OC defect. Biomaterials are commonly used for bone tissue
engineering; however, a key factor is tailoring the material
degradation rate to synchronize with tissue formation and to
facilitate vascular invasion. We have previously shown that
unmodified alginate can support the development of a hy-

pertrophic cartilage template in vitro®® and endochondral
bone formation subcutaneously,'® but permitted only limited
bone formation in vivo in a cranial defect model due to the
slow degradation rate of the hydrogel.* However, using this
modified alginate, in five of the six defects, there was no
evidence of any residual material 3 months postimplanta-
tion.

Defects treated with the engineered cartilage template
were found to contain a more hyaline-like repair tissue as
demonstrated by histological staining, superior mechanical
properties, and statistically significant histomorphometric
scores. The inferior mechanical properties of the repair tis-
sue within the empty control defects, coupled with positive
collagen type I staining, suggest the development of a fi-
brocartilaginous tissue. The integration of the de novo



https://www.liebertpub.com/action/showImage?doi=10.1089/ten.tea.2018.0046&iName=master.img-006.jpg&w=490&h=443

Downloaded by University of Illinois Chicago from www.liebertpub.com at 08/21/20. For personal use only.

CARTILAGE TEMPLATES TO TREAT OSTEOCHONDRAL DEFECTS 169

cartilage with existing cartilage is also paramount for joint
stability, and is often reported to be difficult to achieve with
bioengineering strategies.®”*® For example, integration with
the host tissue was one of the limiting factors reported to
affect complete repair of OC defects using bone marrow-
derived stem cells in a collagen gel.°® In this study, we ob-
serve a significantly better integrated repair tissue in the
treated group; however, consistent integration with the host
cartilage was not obtained. In addition, we did not observe
hyaline repair in all treated defects, demonstrating that further
optimization of the tissue engineering strategy is warranted.

The computational models demonstrated that both the
oxygen and mechanical environments varied spatially
within the defect region, with higher levels of oxygen and
lower magnitudes of strain leading to the prediction of en-
dochondral bone formation in the osseous region of the
defect, which correlated closely with our in vivo findings.
Furthermore, the model suggested that local levels of oxy-
gen availability and mechanical stimuli play a key role in
determining whether hyaline, fibrocartilage, or hypertrophic
cartilage would form in the chondral region of the defect.
The improvement in cartilage formation observed in the
treated group compared with the empty defects can be at-
tributed to the increased stiffness of the engineered tissue
when compared with granulation tissue, as well as the
chondrogenic priming of the MSCs before implantation. The
preculture period ensured that stable cartilage formed within
the chondral phase of the scaffold at an earlier time point
compared with the empty defect. This stable cartilage was
hence more resistant to vascularization, hypertrophy, and
endochondral ossification.

The insight provided by the in silico model can also be
used to improve future tissue engineering strategies target-
ing larger and hence more challenging chondral, OC defects
or whole-joint resurfacing applications. Ideally, the me-
chanical properties of the engineered template would more
closely mimic that of the native tissue before implantation,
or the oxygen environment within the template could be
altered through the incorporation of hypoxia-inducing fac-
tors.®” Potentially, a stiffer implant is required to sustain the
harsh loading, however, it must not compromise the chon-
drogenic capacity of the implant. This could be achieved,
for example, using the 3D biofabrication technology to re-
inforce the alginate hydrogel with printed polymer fibers.”
Polycaprolactone-based scaffolds have previously been used
in the repair of articular cartilage defects to some degree of
success. '

In summary, tissue-engineered cartilage templates were
found to undergo spatially defined differentiation in re-
sponse to local environmental cues within OC defects. This
engineered template prompted the development of a more
hyaline-like cartilage repair tissue, pointing to the potential
for developmentally inspired soft tissue templates, en-
gineered using BMSCs, to regenerate damaged and diseased
synovial joints.
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